Towards real-time photorealistic 3D holography with deep neural networks (2024)

References

  1. Benton, S. A., Bove, J. & Michael, V. Holographic Imaging (John Wiley & Sons, 2008).

  2. Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36, 85:1–85:16 (2017).

    Article Google Scholar

  3. Shi, L., Huang, F.-C., Lopes, W., Matusik, W. & Luebke, D. Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphics. ACM Trans. Graph. 36, 236:1–236:17 (2017).

    Article Google Scholar

  4. Tsang, P. W. M., Poon, T.-C. & Wu, Y. M. Review of fast methods for point-based computer-generated holography [Invited]. Photon. Res. 6, 837–846 (2018).

    Article Google Scholar

  5. Sitzmann, V. et al. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph. 37, 114:1–114:13 (2018).

    Article Google Scholar

  6. Lee, G.-Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).

    Article ADS PubMed PubMed Central Google Scholar

  7. Hu, Y. et al. 3d-integrated metasurfaces for full-colour holography. Light Sci. Appl. 8, 86 (2019).

    Article ADS PubMed PubMed Central Google Scholar

  8. Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).

    Article ADS CAS PubMed Google Scholar

  9. Smalley, D. et al. A photophoretic-trap volumetric display. Nature 553, 486–490 (2018).

    Article ADS CAS PubMed Google Scholar

  10. Hirayama, R., Plasencia, D. M., Masuda, N. & Subramanian, S. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature 575, 320–323 (2019).

    Article ADS CAS PubMed Google Scholar

  11. Rivenson, Y., Wu, Y. & Ozcan, A. Deep learning in holography and coherent imaging. Light Sci. Appl. 8, 85 (2019).

    Article ADS PubMed PubMed Central Google Scholar

  12. Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3, eaao5496 (2017).

    Article PubMed PubMed Central Google Scholar

  13. Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).

    Article ADS CAS PubMed Google Scholar

  14. Levoy, M. & Hanrahan, P. Light field rendering. In Proc. 23rd Annual Conference on Computer Graphics and Interactive Techniques 31–42 (ACM, 1996).

  15. Waters, J. P. Holographic image synthesis utilizing theoretical methods. Appl. Phys. Lett. 9, 405–407 (1966).

    Article ADS Google Scholar

  16. Leseberg, D. & Frère, C. Computer-generated holograms of 3-D objects composed of tilted planar segments. Appl. Opt. 27, 3020–3024 (1988).

    Article ADS CAS PubMed Google Scholar

  17. Tommasi, T. & Bianco, B. Computer-generated holograms of tilted planes by a spatial frequency approach. J. Opt. Soc. Am. A 10, 299–305 (1993).

    Article ADS Google Scholar

  18. Matsushima, K. & Nakahara, S. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method. Appl. Opt. 48, H54–H63 (2009).

    Article PubMed Google Scholar

  19. Symeonidou, A., Blinder, D., Munteanu, A. & Schelkens, P. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling. Opt. Express 23, 22149–22161 (2015).

    Article ADS PubMed Google Scholar

  20. Lucente, M. E. Interactive computation of holograms using a look-up table. J. Electron. Imaging 2, 28–35 (1993).

    Article ADS Google Scholar

  21. Lucente, M. & Galyean, T. A. Rendering interactive holographic images. In Proc. 22nd Annual Conference on Computer Graphics and Interactive Techniques, 387–394 (ACM, 1995).

  22. Lucente, M. Interactive three-dimensional holographic displays: seeing the future in depth. Comput. Graph. 31, 63–67 (1997).

    Article Google Scholar

  23. Chen, J.-S. & Chu, D. P. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications. Opt. Express 23, 18143–18155 (2015).

    Article ADS PubMed Google Scholar

  24. Zhao, Y., Cao, L., Zhang, H., Kong, D. & Jin, G. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt. Express 23, 25440–25449 (2015).

    Article ADS CAS PubMed Google Scholar

  25. Makey, G. et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat. Photon. 13, 251–256 (2019).

    Article ADS CAS Google Scholar

  26. Yamaguchi, M., Hoshino, H., Honda, T. & Ohyama, N. in Practical Holography VII: Imaging and Materials Vol. 1914 (ed. Benton, S. A.) 25–31 (SPIE, 1993).

  27. Barabas, J., Jolly, S., Smalley, D. E. & Bove, V. M. Jr in Practical Holography XXV: Materials and Applications Vol. 7957 (ed. Bjelkhagen, H. I.) 13–19 (SPIE, 2011).

  28. Zhang, H., Zhao, Y., Cao, L. & Jin, G. Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues. Opt. Express 23, 3901–3913 (2015).

    Article ADS PubMed Google Scholar

  29. Padmanaban, N., Peng, Y. & Wetzstein, G. Holographic near-eye displays based on overlap-add stereograms. ACM Trans. Graph. 38, 214:1–214:13 (2019).

    Article Google Scholar

  30. Shimobaba, T., Masuda, N. & Ito, T. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane. Opt. Lett. 34, 3133–3135 (2009).

    Article ADS PubMed Google Scholar

  31. Wakunami, K. & Yamaguchi, M. Calculation for computer generated hologram using ray-sampling plane. Opt. Express 19, 9086–9101 (2011).

    Article ADS PubMed Google Scholar

  32. Häussler, R. et al. Large real-time holographic 3Dd displays: enabling components and results. Appl. Opt. 56, F45–F52 (2017).

    Article PubMed Google Scholar

  33. Hamann, S., Shi, L., Solgaard, O. & Wetzstein, G. Time-multiplexed light field synthesis via factored Wigner distribution function. Opt. Lett. 43, 599–602 (2018).

    Article ADS PubMed Google Scholar

  34. Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proc. International Conference on International Conference on Machine Learning (ICML) 807–814 (Omnipress, 2010).

  35. Sinha, A., Lee, J., Li, S. & Barbastathis, G. Lensless computational imaging through deep learning. Optica 4, 1117–1125 (2017).

    Article ADS Google Scholar

  36. Metzler, C. et al. prdeep: robust phase retrieval with a flexible deep network. In Proc. International Conference on International Conference on Machine Learning (ICML) 3501–3510 (JMLR, 2018).

  37. Eybposh, M. H., Caira, N. W., Chakravarthula, P., Atisa, M. & Pégard, N. C. in Optics and the Brain BTu2C–2 (Optical Society of America, 2020).

  38. Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D. & Ozcan, A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7, 17141 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  39. Ren, Z., Xu, Z. & Lam, E. Y. Learning-based nonparametric autofocusing for digital holography. Optica 5, 337–344 (2018).

    Article ADS Google Scholar

  40. Wu, Y. et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica 5, 704–710 (2018).

    Article ADS Google Scholar

  41. Horisaki, R., Takagi, R. & Tanida, J. Deep-learning-generated holography. Appl. Opt. 57, 3859–3863 (2018).

    Article ADS PubMed Google Scholar

  42. Peng, Y., Choi, S., Padmanaban, N. & Wetzstein, G. Neural holography with camera-in-the-loop training. ACM Trans. Graph. 39, 185:1–185:14 (2020).

    Article Google Scholar

  43. Jiao, S. et al. Compression of phase-only holograms with JPEG standard and deep learning. Appl. Sci. 8, 1258 (2018).

    Article Google Scholar

  44. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S. & Vedaldi, A. Describing textures in the wild. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 3606–3613 (IEEE, 2014).

  45. Dai, D., Riemenschneider, H. & Gool, L. V. The synthesizability of texture examples. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 3027–3034 (IEEE, 2014).

  46. Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A. & Gross, M. Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Graph. 32, 73:1–73:12 (2013).

    Article MATH Google Scholar

  47. Matsushima, K. & Shimobaba, T. Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields. Opt. Express 17, 19662–19673 (2009).

    Article ADS CAS PubMed Google Scholar

  48. Shimobaba, T. & Ito, T. A color holographic reconstruction system by time division multiplexing with reference lights of laser. Opt. Rev. 10, 339–341 (2003).

    Article Google Scholar

  49. Hsueh, C. K. & Sawchuk, A. A. Computer-generated double-phase holograms. Appl. Opt. 17, 3874–3883 (1978).

    Article ADS CAS PubMed Google Scholar

  50. Mendoza-Yero, O., Mínguez-Vega, G. & Lancis, J. Encoding complex fields by using a phase-only optical element. Opt. Lett. 39, 1740–1743 (2014).

    Article ADS PubMed Google Scholar

  51. Xiao, L., Kaplanyan, A., Fix, A., Chapman, M. & Lanman, D. DeepFocus: learned image synthesis for computational displays. ACM Trans. Graph. 37, 200:1–200:13 (2018).

    Article Google Scholar

  52. Wang, Y., Sang, X., Chen, Z., Li, H. & Zhao, L. Real-time photorealistic computer-generated holograms based on backward ray tracing and wavefront recording planes. Opt. Commun. 429, 12–17 (2018).

    Article ADS CAS Google Scholar

  53. Hasegawa, N., Shimobaba, T., Kakue, T. & Ito, T. Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes. Appl. Opt. 56, A97–A103 (2017).

    Article ADS Google Scholar

  54. Sifatul Islam, M. et al. Max-depth-range technique for faster full-color hologram generation. Appl. Opt. 59, 3156–3164 (2020).

    Article ADS PubMed Google Scholar

  55. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In International Conference on Learning Representations (ICLR) (2015).

  56. Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI) 234–241 (Springer, 2015).

  57. Yu, F., Koltun, V. & Funkhouser, T. Dilated residual networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 472–480 (IEEE, 2017).

Download references

Towards real-time photorealistic 3D holography with deep neural networks (2024)

References

Top Articles
Primary Care | GW Medical Faculty Associates
Barbara Dunkelman Went From Super Fan to Star at Rooster Teeth
Jack Doherty Lpsg
Lengua With A Tilde Crossword
Top 11 Best Bloxburg House Ideas in Roblox - NeuralGamer
Lakers Game Summary
#ridwork guides | fountainpenguin
Hotels
Danielle Moodie-Mills Net Worth
Restaurer Triple Vitrage
Jesse Mckinzie Auctioneer
Chase Claypool Pfr
Danielle Longet
Student Rating Of Teaching Umn
Globe Position Fault Litter Robot
Moe Gangat Age
What is the surrender charge on life insurance?
Blog:Vyond-styled rants -- List of nicknames (blog edition) (TouhouWonder version)
A Guide to Common New England Home Styles
R/Afkarena
Craigslist Apartments In Philly
Dexter Gomovies
Dr Manish Patel Mooresville Nc
5 high school volleyball stars of the week: Sept. 17 edition
Letter F Logos - 178+ Best Letter F Logo Ideas. Free Letter F Logo Maker. | 99designs
60 X 60 Christmas Tablecloths
Bend Pets Craigslist
Pretend Newlyweds Nikubou Maranoshin
Craigslist Mt Pleasant Sc
Keurig Refillable Pods Walmart
Nhl Tankathon Mock Draft
1989 Chevy Caprice For Sale Craigslist
Kashchey Vodka
Obituaries Milwaukee Journal Sentinel
Kirsten Hatfield Crime Junkie
Regina Perrow
Inter Miami Vs Fc Dallas Total Sportek
Skepticalpickle Leak
Marie Peppers Chronic Care Management
Kgirls Seattle
Planet Fitness Lebanon Nh
Rochester Ny Missed Connections
Ktbs Payroll Login
Insideaveritt/Myportal
Kerry Cassidy Portal
Conan Exiles Armor Flexibility Kit
11 Best Hotels in Cologne (Köln), Germany in 2024 - My Germany Vacation
21 Alive Weather Team
9:00 A.m. Cdt
Craigslist Marshfield Mo
Deshuesadero El Pulpo
Sunset On November 5 2023
Latest Posts
Article information

Author: Foster Heidenreich CPA

Last Updated:

Views: 5591

Rating: 4.6 / 5 (56 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Foster Heidenreich CPA

Birthday: 1995-01-14

Address: 55021 Usha Garden, North Larisa, DE 19209

Phone: +6812240846623

Job: Corporate Healthcare Strategist

Hobby: Singing, Listening to music, Rafting, LARPing, Gardening, Quilting, Rappelling

Introduction: My name is Foster Heidenreich CPA, I am a delightful, quaint, glorious, quaint, faithful, enchanting, fine person who loves writing and wants to share my knowledge and understanding with you.